Bonjour !! j'ai besoin de votre precieuse aide svp a- Sans utiliser la calculatrice, simplifier les expressions suivantes : 1) sin(π/6)+ cos(π/3)+ sin(5π/6) 2)
Mathématiques
kebdou
Question
Bonjour !! j'ai besoin de votre precieuse aide svp
a- Sans utiliser la calculatrice, simplifier les expressions suivantes :
1) sin(π/6)+ cos(π/3)+ sin(5π/6)
2) sin(π/2)- cos (π) + sin(3π/2)
b- Déterminer les dérivées des fonctions suivantes :
1) f(x) = 2x − 3sin(x)
2) f(x) = x³cos(x)
a- Sans utiliser la calculatrice, simplifier les expressions suivantes :
1) sin(π/6)+ cos(π/3)+ sin(5π/6)
2) sin(π/2)- cos (π) + sin(3π/2)
b- Déterminer les dérivées des fonctions suivantes :
1) f(x) = 2x − 3sin(x)
2) f(x) = x³cos(x)
2 Réponse
-
1. Réponse danielwenin
Réponse :
Bonne soirée
Explications étape par étape
2. Réponse taalbabachir
Réponse :
a. simplifier les expressions suivantes
1) sin (π/6) + cos (π/3) + sin (5π/6) = sin (π/6) + cos (π/3) + sin (π - π/6)
= sin (π/6) + cos (π/3) + sin π cos π/6 - cos π sin π/6
= 2 sin (π/6) + cos (π/3) = 2 cos (π/3) + cos (π/3) = 3 cos (π/3) = 3/2
2) sin (π/2) - cos (π) + sin (3π/2) = sin(π/2) - cos (π) + sin(π + π/2)
= sin (π/2) - cos (π) + sin π cosπ/2 + cos π sin π/2 = - cos π = - (- 1) = 1
b. déterminer les dérivées des fonctions suivantes
1) f(x) = 2 x - 3sin (x) ⇒ f '(x) = 2 - 3 cos (x)
2) f(x) = x³cos (x) ⇒ f '(x) = 3 x² cos (x) - x³ sin (x)
Explications étape par étape
Autres questions