Le plan est muni d'un repère orthonormé (0:1,J) d'unité 1 cm 1) Placer les points A(-6;3), B(2;7), C(5; 1) et D(-3; -3). 2) Calculer les coordonnées de E le mil
Mathématiques
dignitoemmanuella
Question
Le plan est muni d'un repère orthonormé (0:1,J) d'unité 1 cm
1) Placer les points A(-6;3), B(2;7), C(5; 1) et D(-3; -3).
2) Calculer les coordonnées de E le milieu de [AC] et de F le milieu de [BD].
Que peut-on en déduire quant au quadrilatère ABCD ?
3) Calculer les distances AC et BD. En déduire la nature du quadrilatère ABCD.
Pouvez vous me faire ce petit exercice s'il vous plaît, merci d'avance
1) Placer les points A(-6;3), B(2;7), C(5; 1) et D(-3; -3).
2) Calculer les coordonnées de E le milieu de [AC] et de F le milieu de [BD].
Que peut-on en déduire quant au quadrilatère ABCD ?
3) Calculer les distances AC et BD. En déduire la nature du quadrilatère ABCD.
Pouvez vous me faire ce petit exercice s'il vous plaît, merci d'avance
1 Réponse
-
1. Réponse selinazarzour
Réponse :
Explications étape par étape
2) xE = xC+xA/2 = -6+5/2 = -1/2 = -0,5
yE = yC+yA/2 = 1+3/2 = 4/2 = 2
Donc les coordonné de E est (-0,5;2)
xF = xB+xD/2 = 2-3/2 = -1/2 = -0,5
yE = yB+yD/2 = 7-3/2 = 4/2 = 2
Donc les coordonné de F est (-0,5;2)
Les diagonales de ABCD ont le même milieu donc ABCD est un parallélogramme.
3) AC = √(xC-xA)^2 + (yC-yA)^2
= √(5-(-6)^2 + (1-3)^2
= √11^2 + 4
= √121+4
= √125 = 5√5 = 11,18
Donc AC est égale à environ 11,18 cm
BD = √(xD-xB)^2 + (yD-yB)^2
= √(-3-2)^2 + (-3-7)^2
= √(-5)^2 + (-10)^2
= √25+100
= √125 = 5√5 = 11,18
Donc BD est égale à environ 11,18 cm
AC = BD.
Or un parallélogramme qui a deux côtés consécutifs égaux est un losange
Donc ABCD est un losange.