Mathématiques

Question

Bonjour, je suis bloquée à cette exercice c'est pour mes révision du bac

On considère l'équation différentielle :
(E):y + y = g(x)
où g est une fonction définie sur R.
Partie A
On suppose que g(x)=0.
1. Résoudre (E).
2. Trouver la solution f de (E) qui vérifie f(1)=e^-1
Partie B
On suppose que g(x)=-X-1.
1. Montrer que la fonction h(x)=e^-x - x est solution de (E).
2. Calculer h'(x) en utilisant deux méthodes : la fonction
het l'équation (E).
3. Étudier le sens de variation de h sur [0; +[.

1 Réponse

  • Bjr,

    1.

    Nous devons résoudre y' + y = 0

    Nous savons du cours que les solutions sont

    [tex]ke^{-x}[/tex]

    avec k réel quelconque

    2. Nous devons trouver k tel que

    [tex]ke^{-1}=e^{-1}[/tex]

    donc k=1

    [tex]f(x)=e^{-x}[/tex]

    PArtie B

    1.

    [tex]h(x)=e^{-x}-x\\\\h'(x)=-e^{-x}-1\\\\h'(x)+h(x)=-x-1=g(x)[/tex]

    donc h est solution de (E)

    2.

    Nous pouvons procéder comme dans la question 1 pour trouver que

    [tex]h'(x)=-e^{-x}-1[/tex]

    Comme h est solution de (E) nous pouvons aussi écrire que

    [tex]h'(x)=g(x)-h(x)[/tex]

    d'où le résultat

    3.

    pour x positif

    h'(x) < 0

    donc h est décroissante

    merci

Autres questions